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Lecture 9

How Can We Describe the Distribution of a Discrete Random Variable?

In describing a distribution, we always discuss the center (measure of central tendency) and
spread. The discrete probability distribution is no exception.

Mean (aka Expected Value, Expectation, or Average)

For a discrete distribution, this is just the weighted average of the possible values with
corresponding probabilities as the weights.

Formulaically:

Suppose that X is a discrete random variable with the following probability distribution:

X xq X, X3 Xy,
P(x) P1 P2 P3 Pn
Then:

Example — Defective Products

Consider a company with 2 production lines. The following probability distribution function of
the random variables X and Y represents the daily number of defective products coming out of
each production line.

X,y 0 1 2 3 4
P(x) .15 .30 .25 .20 .10
P(y) .05 .05 .10 .75 .05

a) Find the expectation of X.
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b) Just using your intuition, which of the 2 production lines do you think will have a higher
average daily number of defective products?

c) Find the expected value of Y and confirm your intuition.

Example — Life-Insurance
Suppose that you work for an insurance company, and you sell a $150,000 whole-life insurance

policy at an annual premium of 51250. Actuarial tables show that the probability of death
during the next year for a person of your customer’s age, sex, health, etc. is 0.005.

a) Letthe RV X be the company’s gain (i.e. amount of money made by the company) for a
policy of this type. What is the probability distribution function of X in table form?

b) What is the expectation with regard to company profit (gain) for a policy of this type?
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c) Suppose that a decade has passed and your actuarial tables indicate that the probability

of death during the next year for a person of your customer’s current age is .025. This
change in probability will obviously be reflected in the annual premium paid. What
should the annual premium be (instead of $1250) if the company intends to keep the
same expected profit (gain)?

Standard Deviation

Formulaically:

Suppose that X is a discrete random variable with the following probability distribution:

X

X1 Xy X3 Xn

P(x)

P1 [%) %] Pn

and mean p,.

The standard deviation of X (a,,) is again a weighted average:

Similar to when we discussed descriptive statistics, we have the following qualities about the
standard deviation of a discrete probability distribution:
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Example — Defective Products (cont.)
Note the probability distributions of the two random variables we discussed earlier regarding
defective products:

X,y 0 1 2 3 4
P(x) .15 .30 .25 .20 .10
P(y) .05 .05 .10 .75 .05

a) Find the standard deviation of the random variable X.

b) Using only your intuition, which RV do you think has the larger standard deviation?
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c) Confirm your intuition by calculating gy.

So, we can conclude that, on average, the daily number of defective products from production
line X'is , give or take

Let’s Get a Better Understanding of Standard Deviation:
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Rank the standard deviations of the 4 graphs above from smallest to largest:
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A special case of a discrete random variable is the Binomial Random Variable.

The Binomial Random Variable

Before we begin, we’ll need some mathematical background:

i Factorial

Example — Factorial Calculation
Calculate 5! & 3!

ii. Combinations

The number of ways you can choose k objects out of n total objects (i.e. k is the
number of combinations) is:

Notice that

How?
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Example — Combinations
Suppose Austin is randomly selecting a team of 5 students from his class of 12. In
how many different ways can this be done?

The Binomial Random Variable

The binomial random variable is defined on the following experiment:

So, if the random variable, X for example, follows a binomial distribution, we define X by the
number of trials (n) and the probability of success:

Example — Determining Binomial Random Variables
For each of the following, decide whether the random variable of interest is indeed a Binomial
Random Variable. If not, identify why not.

a) Adieis rolled 4 times with the RV X reflecting the number of “3’s”

b) The random variable X represents the number of tosses until we get 7 “Heads”
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c) A student who has no clue uses an independent random guess to answer each question
on a test consisting of 25 multiple choice questions (each with 5 options) and 4 T/F. The
random variable X represents the number of questions correct.

d) A student who has no clue uses an independent random guess to answer each question
on a test consisting of 29 multiple choice questions (each with 5 options). The random
variable X represents the number of questions correct.

e) Suppose that among 20 donors in a blood drive, 8 have blood type A. Three of the 20
donors are chosen at random. Let X be the number of donors with blood type A that are
chosen (out of 3).

Note: Remember that when we choose a sample of subjects from a population, we can
assume independence and use the Binomial distribution if:

i The sample is random

ii. The population size is large (at least 20 times larger) compared to the sample size

If X~Bin(n, p), then the probability distribution of X is

NOTICE THAT IS ALWAYS A POSSIBLE VALUE OF X!!!
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Example — Coin Tosses
Suppose that we conduct a random experiment by tossing the same coin 20 times. Let the
random variable X be the number of heads tossed in the experiment.

a) Is X a discrete or continuous random variable?

b) What are the possible values of X? Is this a subset of the sample space?

c) Does X follow a binomial distribution, i.e. is X a Binomial Random Variable? If so,
properly label the distribution.

d) What is the probability distribution function of X?

e) What is the probability that exactly 8 tosses are heads?
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f) What is the probability that less than 3 tosses are heads?

g) What is the probability that at most 2 tosses are heads?

h) What is the probability that at least 3 tosses are heads?

Describing A Binomial Random Variable

If X~Bin(n,p), then we have the following:

So, to continue the Coin Tosses example:

i) Find the expected number or heads to come up.

10
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j)  How much are we “off” by, on average, when we use the mean of X to estimate the
number of heads that will come up?

k) What is the probability that the number of heads that are tossed is within one
standard deviation from the mean?



