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Agendas

Lecture — Quiz #1 (9/17/18)

Lecture — Quiz #1 Review (9/19/18)

Lecture — Ch 3 Lecture 1 - Slides 1 — 14 (9/21/18)

Random Variables — numerical representation of an outcome of a random
experiment

Discrete vs Continuous Random Variables (the support of the RV & how to
calculate probabilities)

Discrete Random Variables — pdf, 2 key properties of all pdfs

Forms of Discrete Random Variables — Table (Info Given), Probability
Histogram, Formula

Lecture — Ch 3 Lecture 2 Slides 15 — 25 (9/24/18)

1.

Expected Value — Definition, Constant Rule, Function Rule (with example),
E[X?+3X +5] = E[X?] +3E[X] +5,and E[c] = ¢

Variance & Standard Deviation — Definition as E[(X — u)?], shortcut
formula (with proof), V[X] = a?V[X]

Bernoulli Distribution p(x) = p*(1 — p)1™* x = 0,1, 1 trial with 2 possible
outcomes (coin flip, but don’t have to have equal probability of success and
failure), X~Bern(p), proofs of expectation and variance E[X] = p, V[X] =
p(1—p)

Binomial Distribution — extension of Bernoulli distribution, FITS, proof of
mean E[X] = np, just state the variance V[X] = np(1 — p)

Lecture — Ch 3 Lecture 3 Slides 26 — 34 (9/26/18)

e

Show that if Y~Bin(n,p) and Z~Bin(n,1 —p), thenp(y =n—y) = P(z = y).
Consider the RV Y~Bin(n,p). Recursively define the p(y).
Derive the variance of any RV Y ~Bin(n, p)
Geometric Distribution
a. Context
b. Proof of Valid pdf
c. Derivation of expectation
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d. The memoryless property for the Geometric distribution states that if
X~Geo(p), with i, j positive numbers, then P(X =i+ j|X = i) = P(X =)).
i. First, determine the cumulative distribution function for a geometric
distribution (hint: the cumulative distribution function F(x) =
P(X < x) = P(you get a success at or before the x'trial) = 1 —
P(first x trials are all failures) )
ii. Now, prove that the Geometric distribution indeed exhibits the
memoryless property.
5. Hypergeometric Distribution
a. Context
b. Proof of valid pdf

X~Geo(p)
p(x)=1-p)*p x=123,..

E[X] _1 V[X] = ! _Zp
p p

X~Hypergeo(N,M,n)

x=0123,.n n<M<N n<N-M

= - (3) (5 ()

Lecture — Ch 3 Lecture 4 Slides 35 — 45 (9/28/18)

1. Geometric Distribution
Context
Proof of Valid pdf
Derivation of expectation
The memoryless property for the Geometric distribution states that if
X~Geo(p), with i, j positive numbers, then P(X =i+ j|X = i) = P(X =)).
i. First, determine the cumulative distribution function for a geometric
distribution (hint: the cumulative distribution function F(x) =
P(X < x) = P(you get a success at or before the x"'trial) = 1 —
P(first x trials are all failures) )
ii. Now, prove that the Geometric distribution indeed exhibits the
memoryless property.
2. Hypergeometric Distribution
a. Context
b. Proof of valid pdf
3. Negative Binomial Distribution

o0 0 oo
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a. Context
4. Poisson Distribution
a. Proof of valid pdf
b. Proof of mean & variance

X~Geo(p)
p(x)=1-p)*'p x=123,..

E[X]:1 V[X]=1_p
p

p2

X~Hypergeo(N,M,n)

p(x) = N x=0123..n n<M<N n<N-M
()
E[X] = nM VIx] = (M) (N — M) (N — n)
"N BV AN A AV
X~Negbin(r,p)
p(x) = (f:i)Pr(l —-p)*7T x=rr+1r+2,. 0<p<l1
T r(1—p)
EX] == VIX] ="
p p?
X~Poisson(4)
_A/lx
p(x) = por x=012. 0<4

E[X]=V[X] =2
Lecture — Problem Session for Ch 3 (10/1/18)

Lecture — Ch 4 Lecture 1 Slides 1 -5 (10/3/18)

1. Finish Review Question 4

2. Probability Density Functions, Probability Distribution Functions, and Probability Mass
Functions

3. 2 Distinguishing properties of continuous random variables — support is an interval &
P(X = x) = 0 for any singular value of x in the support.

4. Finding probabilities usinga pdf (P(a < X < b) = fff(x)dx)

5. 2 Properties of every legitimate pdf f(x) > 0Vxe y & fjooof(x) =1

6. Verify whether the following function is a valid probability density function on the given
support
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7.

8.

9.

_(.075x+.2 3<x<5
fe) = { 0 otherwise
Verify whether the following function is a valid pdf on the given support
£ :{x—4 1<x<4-+V11

0 otherwise

Verify whether the following function is a valid pdf on the given support

(L1, 0<y<s
cy 0<y
fx)=42 1

- < v <
ls 757 >=y=10

0 y<Oory>10
kx3+§x2 0<x<2
0 otherwise
a. Find k such that the above function is a valid probability density function on the
given support.
b. What is the probability that x € (0,1)? Is this the same as the probability
x € [0,1]? Why is this so?

Consider the function f(x) = {

Lecture — Ch 4 Lecture 2 Slides 6 — 19 (10/5/18)

H w N e

Uniform Distribution — Context, pdf (f: cdx)

CDFF(x) = P(X <x) = " f(»)dy (for X~U(a, b) F(x) = =)
Percentiles
Expectation and Variance -> Go through uniform distribution (E[X] = asz ViX] =
(b—a)z)
12

Suppose that Y has a uniform distribution over the interval [0,1].

a. Prove that the distribution of Y is valid

b. Find F(y)

c. ShowthatP(a<Y <a+b),fora=>0,b=>0,anda+ b <1 depends only

upon the value of b.

d. What is the third moment, i.e. E(X3)?

e. Whatis E[X3® —X? —1]?
A telephone call arrived at a switchboard at random within a 1-minute interval. The
switch board was fully busy for 15 seconds into this 1-minute period. What is the
probability that the call arrived when the switchboard was not fully busy?
Consider the following pdf
0<x<1

N - R

f&x) =

1<x<?2

0 o.w.
a. Isthe distribution differentiable everywhere? How about continuous?
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b. Find F(x)

8. The cycle time for trucks hauling concrete to a highway construction site is uniformly
distributed over the interval 50 to 70 minutes.

a. What is the probability that the cycle time exceeds 65 minutes if it is known that
the cycle time exceeds 55 minutes?
b. Calculate the IQR of this dataset

Lecture — Ch 4 Lecture 3 Slides 20 — 28 (10/8/18)

Hw

The cycle time for trucks hauling concrete to a highway construction site is uniformly
distributed over the interval 50 to 70 minutes.
a. What is the probability that the cycle time exceeds 65 minutes if it is known
that the cycle time exceeds 55 minutes?
b. Calculate the IQR of this dataset

1 —=w?
Normal Distribution | f(x) = PTG 202

Standardization
Empirical Rule
Let Y be normally distributed with mean 4 and variance 1. Find the following:
a. The range of values seen as “typical”
b. The 84t percentile
c. What percentage of observations fall below 2?
d. What percentage of points fall above 5?
Let X be normally distributed with mean 10 and standard deviation 5. Find the
following probabilities:

a. P(X<8)

b. P(X2>11)

c. The 86™ percentile

d. Q1 of this distribution

e. The median of this distribution

f. The value such that 16% of the data fall above this point.

g. P(1<|X])
Binomial Approximation — Conditions (np = 10 and n(1 — p) = 10) & Distribution

(X~N(np, np(1l — p)))
Continuity Correction — using a continuous RV to approximate a discrete random
variable (P(X >a)=PX=>a-— 0.5))
Suppose that 10% of all steel shafts produced by a certain process are
nonconforming but can be reworked (rather than having to be scrapped). Consider a
random sample of 200 shafts, and let X denote the number among these that are
nonconforming and can be reworked. What is the (approximate) probability that X is
a. At most 30?
b. Lessthan 30?
c. Between 15 and 25 (inclusive)?
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Lecture — Ch 4 Lecture 4 Slides 29 — 36 (10/10/18)

1. Binomial Approximation — Conditions (np = 10 and n(1 — p) = 10) & Distribution

(X~N(np, np(1l — p)))

2. Continuity Correction — using a continuous RV to approximate a discrete random
variable (P(X = a) = P(X = a— 0.5))

a. The idea: Maximize the area that you are considering under the normal
distribution such that the inequality still represents the same possible values of X
under the binomial distribution.

i. P(X<120)=P(X<120.5)
ii. P(X<120)=P(X<119)=P(X<119.5)
iii. P(130<X<145)=P(129.5<X<1455)

3. Suppose that 10% of all steel shafts produced by a certain process are nonconforming
but can be reworked (rather than having to be scrapped). Consider a random sample of
200 shafts, and let X denote the number among these that are nonconforming and can
be reworked. What is the (approximate) probability that X is

a. At most 30?

b. Lessthan 30?

c. Between 15 and 25 (inclusive)?

4. Gamma Function & Its Properties

a. I'(a) = fooo x% e *dx (for a > 0)
b. Foranya > 1,I'(a) = (e — DIl'(a —1)
c. Forany positive integer n,I'(n) = (n — 1)!
1
d. T(3)=r
e. Evaluate the following:
. fooo x3e *dx

o 1
i. J, xe 3dx
0 _1
iii. [ x%e73"dx
o 1
iv. [ xe # dx
5. Gamma Distribution (X~Gamma(a, ﬁ))

a. Proof of valid pdf (f(x) = B“l}(a) x*le B x> 0) witha, 8 > 0

b. Derivation of expectation and Variance (E(X) = af and V(X) = aff?)
6. Exponential Distribution (X~Exp(l))
pdf (f(x) = de™* x = 0) with 1 > 0 (If X~Gamma(1, B), look familiar?)
b. cdf (F(x) = 1—e™ x>0)
c. Expectation and Variance (E(X) = % and V(X) = %2
d. Memoryless Property P(X >t + to|X > t,) = P(X >t) = e M
7. Chi-Squared Distribution (X~x2(v))

o
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a. pdf <f(X) = v/ZF( )x(g)_le_g x> 0) withv = d.f. (IfX~Gamma(%, 2), look
familiar?)

b. Expectation and Variance (E(X) = v and V(X) = 2v)

Lecture — Ch 4 Lecture 5 Slides 37 — 46 (10/12/18)

1. Gamma Distribution (X~Gamma(a ﬁ))
a. Proof of valid pdf (f(x) = ,B“F(a) x® e B x> 0) with a, f > 0

b. Derivation of expectation and Variance (E(X) = af and V(X) = af?)
2. Chi-Squared Distribution (X~)(2 )

a. pdf <f(x) =t ( )x(g)_le_g x> 0) with v = d.f. (IfX~Gamma(%, 2), look
2

familiar?)
b. Expectation and Variance (E(X) = vand V(X) = 2v)
3. Exponential Distribution (X~Exp(/1))

a. pdf (f(x) = le ™™ x> 0) with 1 > 0 (If X~Gamma (1,%), look familiar?)
b. cdf (F(x) = 1—e™* x>0)
c. Expectation and Variance (E(X) = % and V(X) = %2

d. Memoryless Property P(X >t + to|X > t,) = P(X > t) = e M

4. Probability Plots
a. Motivation -> Check if sample came from a certain type of distribution
b. Creating the Q-Q (quantile-quantile plot)

i. Sort the data from smallest to largest

100(i—0.5)

i. Fori=12,..,n, xgisthep; = th sample percentile

iii. Then calculate the theoretical percentiles of a standard normal
distribution for each percentile (P(z < z;) = p;)
iv. Plot the z; on the x-axis and the x ;) on the y-axis
c. Exercise: Suppose a data set contains 10 observations that are sorted as follows:
-1.91, -1.25, -0.75, -0.53, 0.20, 0.35, 0.72, 0.87, 1.40, 1.56
i. Construct the Normality Plot (aka the Q-Q Plot)
ii. Describe the shape of the distribution
d. Interpretation
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Ideally on the 45° line = implies normality

If the right tail bends upward, then distribution of the observations has a
heavy right tail

If the right tail bends downward, then distribution of the observations
has a light right tail

If the left tail bends upward, then distribution of the observations has a
light left tail

If the left tail bends downward, then distribution of the observations has
a heavy left tail

5. Beta Distribution

. 1 a—1 _ b—1 _ F(a)F(b)
a. Beta Function (fo XA -0 dx = oS )
. _ F(a+,8) a—1 _ ﬂ—l .
b. Proof of valid pdf (f(x) = forp * (1-x) 0< xBS 1) witha, 8 > 0
. . _ a _ a
c. Expectation and Variance (E(X) = oy andV(X) = —(a+ﬁ)2(a+/3+1))

6. (Weibull Distribution)
7. (Lognormal Distribution)

Lecture — Problem Session for Ch 4 (10/15/18)

Lecture — Quiz #2 (10/17/18)

Lecture — Quiz #2 Review (10/19/18)

Lecture — Ch 6 Lecture 1 Slides 1 — 11 (10/22/18)

1. Beta Distribution
a. Beta Function (fol x4 11— x)P"ldx = —)

_ T(a)r()
I'(a+b)

b. Proof of valid pdf (f(x) = Mx"“l(l —x)fF10< x< 1) with a, 8 > 0

r(a)rp)
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c. Expectation and Variance (E(X) = %ﬁ andV(X) = Wiﬂ?ﬂ))

General Introduction to Inference (Statistics Lifecycle)

Point Estimator versus Estimate (Definition of a Statistic)

Unbiased Estimator (E(é) = 0) and bias (the difference)

Example 1 — When X is a binomial RV with parameters n and p, is the sample proportion

p= %an unbiased estimator of p?

Mean Squared Error (MSE of an estimator = E [(9 - 9)2]

What happens to MSE when we have an unbiased estimator?
Example 1 Continued — Find the MSE of the estimator X/n and show that as p = 0 the
MSE of the estimator approaches O.
Example 2 - The reading on a voltage meter connected to a test circuit is uniformly
distributed over the interval (8,60 + 1), where 8 is the true but unknown voltage of the
circuit. Let X3, X5, ..., X;, be a random sample of readings from this voltage meter.

a. Show that X is a biased estimator of 8 and find its bias

b. Is the estimator X,y — X(4) unbiased?

¢. Which is a better estimator, X,y — X(q or X?

d. Can we find a better estimator of 6°?

Lecture — Ch 6 Lecture 2 Slides 12 — 28 (10/24/18)

Measuring precision - standard error of an estimator <0§ = ’V(é))

Minimum Variance Unbiased Estimator (MVUE)
Example 1 (Cont.) — Quantify the precision of the estimator p; = jl—( Which is a better
2n

estimator, p; = %or Py, = (assume X3, ..., X, are i.i.d)?
Method of Moments
a. What are moments (n,, = E[X"]) Gamma Distribution

b. How to find estimators using the method of moments (Set

=1
1 n

N2 = EZ X?
i=1
1 .

Nk = glek
i=1

Then, isolate for the parameters you are estimating
c. Prove that the moment estimators for N(u, 02) are fi = X and 62 =

1 —_
; Ln=1(Xi - X)Z
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V2

ndf =

d. Prove the moment estimators for Gamma(e, ) are & = m a
n) &i=1\ T

() Zha(xi-%)?
X
O+1)x% 0<x<1
0 , 0.W.
where 8(> 0) is the unknown parameter. Derive an estimator for 8 by the

method of moments.
5. Maximum Likelihood Estimation

a. Likelihood function (L(é))

b. If X~Bin(n, ) with n known, find 8,,, 5.
c. Suppose X, ..., X, are iid Bin(n, 8) with n known, find 8, ¢
d. Suppose X, ..., X, areiid N(u, 02), show that fiy;,; = X and 62,5 =

1 _
;Z?=1(xi - x)z

6. The Invariance Principle for MLE’s (g(@)MLE) = g(éMLE)) (the function doesn’t even

e. Suppose that X3, ..., X,, are iid with common pdf f(x) = {

have to be one-to-one!)
a. From Number 5, part (c), find the MLE for 2 — 50 + 2
b. From Number 5, part (d), find the MLE for &

Lecture — Problem Session for Ch 6 (10/26/18)

Lecture — Ch 7 Lecture 1 Slides 1 - 7 (10/29/18)

1. MLE Review
General Form Of Confidence Intervals (point est * (critical value)(s.e. of point estimate) )
3. Confidence Intervals vs Prediction Intervals

N

4. Confidence Interval for Mean of Normal Population <f T Za (i)>
2 \Wn

a. Interpretation
b. Factors impacting the width

Lecture — Halloween Jeopardy (10/31/18)

Lecture — Ch 7 Lecture 2 Slides 1 — 19 (11/2/18)

1. Confidence Intervals vs Prediction Intervals
2. General Form Of Confidence Intervals (point est + (critical value)(s.e. of point estimate) )

3. Confidence Interval for Mean u of Normal Population | X + za (i)
z \Wn

a. Interpretation
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10.

11

Margin of Error & Factors impacting this
2
Minimum Sample Size (n = (Zg %) ) (Caution: your book defines width, not m)
2

Large sample (n > 40) C.I. for the Mean u (regardless of the distribution of the original

. . . — S
distribution) <x + z% (\/—ﬁ)>
Confidence Interval for Population Proportion (for large n, i.e. np = 10 and n(1 — p) >

10) (ﬁ t 70 /—’““’”)
2 n

Example 1 — Consider a normal population distribution with the value of g know.
a. What is the confidence level for the interval x + 2.81 \% ?

b. What is the confidence level for the interval x + 1'44\% ?

c. What value of zz in the interval X + z« (\%) results in a confidence level of
2 a 1+CC) ?

99.7%? (hint: 1 — > .
d. What value of z« in the interval X + z« (\%) results in a confidence level of 75%?
2 2

Example 2 — On the basis of extensive tests, the yield point of a particular type of mild
steel-reinforcing bar is known to be normally distributed with ¢ = 100. The
composition of bars has been slightly modified, but the modification is not believed to
have affected either the normality or the value of o.

a. Assuming this to be the case, if a sample of 25 modified bars resulted in a sample
average yield point of 8439 |Ib, compute a 90% Cl for the true average yield point
of the modified bar.

b. How would you modify the interval in part (a) to obtain a confidence level of
92%?

Determine the confidence level for each of the following large sample one-sided
confidence bounds:

a. Upper bound: ¥ + (.84) (\/S—ﬁ)
b. Lower bound: ¥ — (2.05) (%)
c. Upper bound: ¥ + (.67) (j—;)

Lecture — Ch 7 Lecture 3 Slides 20 — 37 (11/5/18)

1.

2.

Determine the confidence level for each of the following large sample one-sided
confidence bounds:

a. Upper bound: x + (.84) (%)
b. Lower bound: x — (2.05) (%)
c. Upper bound: x + (.67) (%)

1-sided confidence intervals
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What if we don’t know sigma and we have a small sample size (n < 40)? (JE + t%’n_l %)
4. Example — Determine the t critical value for the two-sided confidence interval in each of
the following situations:
a. Confidence level = 95%, df. = 10
b. Confidence level = 99%, df. = 15
c. Confidence level = 99%, df. = 38

5. Prediction Interval for future observation X,,,; — data from a normal distribution with

known variance <J? + Zao /1 + %)
2

6. Prediction Interval for future observation X,,,; — data from a normal distribution with

unknown variance <f tte s fl + i)
2’ n

7. Confidence Interval for g2 from a normal distribution with unknown variance

X, X2y

8. Determine the following
a. The 95 percentile of the Chi-Squared Distribution with 10 d.f.

b. The P(10.98 < y? < 36.78) where x?2 has 22 d.f.

vs?  vs? . .
—,= (for g, just take the square root of the interval).

Lecture — Problem Session for Ch 7 (11/7/18)
Lecture — Quiz #3 (11/9/18)
Lecture — Quiz #3 Review (11/12/18)

Lecture — Ch 8 Lecture 1 - Slides 1 — 15 (11/14/18)

1. Terminology
a. Statistical Hypothesis = A claim about a population, whether it is about a single
parameter, the values of several parameters, or the form of an entire probability
distribution
b. Hypothesis Test = An assessment of the evidence provided by a data set in favor
of (or against) a hypothesis about a population
c. Test Statistic = the sample statistic. We want to see if the sample statistic is
consistent with a hypothesis on the corresponding population parameter. (the
entire goal is to see if this difference is statistically significant at the alpha
significance level).
2. General Form of every Hypothesis test
3. The flow of every hypothesis test = Think of it as a proof by contradiction.
4. Two-sided vs one-sided alternatives
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5. Example 1 — New Orleans is sinking. A study by the ASCE Journal of Hydrologic
Engineering in 2016 cited that about 65% of New Orleans proper is at or below sea level.
Hurricane Katrina highlighted the importance of levees in protecting the city. However,
Professor Raymond Seed of the University of California, Berkeley, claims that during
Katrina a surge of water estimated at 24 feet (about 10 feet higher than the levees along
the city’s eastern flank), swept into New Orleans from the Gulf of Mexico, causing most
of the flooding in the city. The city now has put forth a policy that levees must be at
least 10 feet higher than resting water level. How can we study this problem?

6. Types of Error

a. Alpha (a) = P(type | error) = P(reject Ho | Ho is true)

b. Beta (B) = P(type Il error) = P(don’t reject Ho | H1 is true)

c. Powerofatest=1-p

d. The goal: minimize alpha and beta. For a fixed alpha, we want the hypothesis test
with the smallest beta.

e. Trade-off between a and § - For fixed experiment (and sample size), decreasing
alpha will increase beta, and vice versa.

7. Example 1 Cont. — What is a type 1 error in this case? What is a type 2 error in this case?
Given the natural trade-off between alpha and beta, how should you choose to weight
these?

8. Example 2 — Consider a population with the pdf N(6,1) where 8 € R is unknown. An
experimenter wishes to test Hy: 8 = 5.5 vs H;: 8 = 8 by collecting a random sample of
X = (X1,X,, ..., Xg) and is debating which test to use of the following:

i. Reject H,iff X; > 7
ii. Reject Hy iff ~(X; +X;) > 7
iii. Reject HyiffX > 6

Calculate alpha and beta for tests 1,2, and 3.

Which test should you use, test 1 or test 3?

Which test should you use, test 1 or test 2?

What is the power of tests 1 and 3? What does this tell you?

What if | change the distribution to a Chi squared distribution with degrees of

freedom 8? How about a Binomial with p = 8 and n known? How would the
calculation change?

® oo oo

Lecture — Ch 8 Lecture 2 - Slides 16 — 26 (11/16/18)

1. 1-Sample tests about a population mean
a. 1-sample z-test = Normal distribution with known o2
b. Large-Sample Approximate 1-Sample Z-Test = n > 40 unknown o2
c. 1-Sample T-Test = unknown 2 (small n)

2. Summary
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1-Sample Z-Test | Large Sample 1-Sample T-Test
Approx 1-
Sample Z-test
Test Stat . _ X~ . X—lo . X—Ho
i i b
Vn Vn Vn
Hy:p > RR:z* = z, RR:z* = z, RR:t" >ty
Hy:u < Wy RR:z* < —z, RR:z" < —z, | RR:t" < —tgyn 1
Hy:p # g RR: |z"| = za RR:|z"|Zza | RR:|t"| = ta, |
2 2 2’

14

The Process:
a. Confirm Assumptions:

i. One sample compared to known value

ii. Testing for true unknown mean (p)

iii. In this case we have unknown o2

iv. Do we have approximate normality?? (Normal Q-Q Plot)
Example 1 — The statistics department is ordering markers for the upcoming semester
and needs to know the average lifetime of a marker for our instructors. The average
lifetime posted on the company’s website is 3 weeks, give or take 2 days assuming
normality. However, the average lifetime for Austin’s 25 markers last semester was 19
days, give or take 1 day. Can the department trust the company’s website? Test your
claim at the alpha significance level of .10.
Example 2 — In an effort to study the population of the nearly extinct mountain gorilla,
researchers looked at the lifespan of these gorillas. Researchers studied 100 of the 880
remaining mountain gorillas and recorded their average age of 13 years old, give or take
2 years. Last year, the average age of mountain gorillas was 13.4 years. Is there reason
to be concerned about the populations reproduction at the alpha significance level of
.05?
Example 3 (Quality Assurance) - Philips produces 65W Dimmable LED Energy Star Light
Bulbs sold at Home Depot. On the Home Depot site, they advertise the “life hours” of
each light bulb is 25000:
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Philips Model # 4 et dedok (12
65W Equivalent Soft White with Warm Glow BR30 Dimmable LED Ene... *13%

Product Overview cifications

Product Overview

from functional lighting, to inviting, to cozy. You can customize your room for every moment

iance

st depend on rates and use]

acing your light bulbs, Philips LED bulbs enable the perfect lighting solution for 22+ years

or warting

Accounting for variability, is the mean lifetime of light bulbs actually 25000? Assume we
have a sample of n=100 light bulbs with x = 23024 and sample st dev (s) = 6705. Also
assume we have the following output:

Normal Q-Q Plot

o
N_
[14]
@
=
[
L]
-]
a
L e
[= N
£
L]
. — _|
1
N_O
1

Theoretical Quantiles

7. What happens when we don’t have approximate normality? (Wilcoxon Signed Rank Test
- Nonparametric (distribution free)
a. Hypotheses test median not mean
b. Test stat V = sum of positive signed ranks
c. Rejection Rule = uses normal distribution
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Lecture — Ch 8 Lecture 3 - Slides 27 — 41 (11/26/18)

1. SET Surveys

2. Example 3 (Quality Assurance) - Philips produces 65W Dimmable LED Energy Star
Light Bulbs sold at Home Depot. On the Home Depot site, they advertise the “life
hours” of each light bulb is 25000:

Philips  Model # 465996 ek ok (12 -

65W Equivalent Soft White with Warm Glow BR30 Dimmable LED Ene... *13¥

Product Qverview

Product Overview

ese Philips bulbs offer a dimmable warm glow effect that lets you go from functional lighting, to inviting, to cozy. You can customize your room for every moment

foor track fixtures, down lights and high hats to create a lovely, warm ambiance

Accounting for variability, is the mean lifetime of light bulbs actually 25000? Assume we
have a sample of n=100 light bulbs with X = 23024 and sample st dev (s) = 6705. Also
assume we have the following output:

Normal Q-Q Plot
o]
N —
[7y]
L
:.E - -
m
=0
a
@ o -
(=]
£
o
w - 4
IS L8]
1

Theoretical Quantiles
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3. 1-Sample Test for Population Proportion — Large-Sample Approximate Z-Test
a. Useifnpy = 10andn(1 —p,y) = 10
b. (Don’t worry too much about small sample test for proportion)
c. Summary

1-Sample Z-Test
for Population
Proportion
Test Stat 7t = D — Do
Po(1 —pyo)
\j n
Hi:p > p, RR:z" = z,
Hi:p <pg RR:z* < —z,
Hi:p # po RR: |z*| = za
2

4. Example 4 (Text Ch 8, Question 43) — A plan for an executive travelers’ club has been
developed by an airline on the premise that that 5% of its current customers would
qualify for membership. A random sample of 500 customers yielded 40 who would
qualify. Using this data, test at the alpha significance level of .01 the null hypothesis
that the company’s premise is correct against the alternative that it is not correct.

5. A Note on p-values and multiple hypothesis testing (Bonferroni Correction)

a. Quick Source: https://www.npr.org/sections/thetwo-
way/2016/09/13/493739074/50-years-ago-sugar-industry-quietly-paid-
scientists-to-point-blame-at-fat

b. Further Reading: Huff, Darrell, and Irving Geis (illustrator). How to Lie with
Statistics. W.W. Norton & Co., 2006

i. Discusses Bias, “A Well Chosen Average”, Deceptive Visualizations,
etc.

Lecture — Problem Session for Ch 8 (11/28/18)

Lecture — Ch 9 Lecture 1 - Slides 1 -9 (11/30/18)

1. 2-Sample Z-Test with C.l. — comparing 2 population means (LABEL EACH)
a. Assumptions
i. 2independent samples
ii. Comparing means
iii. Approximate normality for both samples (of both sampling distributions
of sample means)


https://www.npr.org/sections/thetwo-way/2016/09/13/493739074/50-years-ago-sugar-industry-quietly-paid-scientists-to-point-blame-at-fat
https://www.npr.org/sections/thetwo-way/2016/09/13/493739074/50-years-ago-sugar-industry-quietly-paid-scientists-to-point-blame-at-fat
https://www.npr.org/sections/thetwo-way/2016/09/13/493739074/50-years-ago-sugar-industry-quietly-paid-scientists-to-point-blame-at-fat
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iv. Both with known, unequal, variances
b. Summary

2-Sample Z-Test
with C.1.

Test Stat ., Xx—y—d,
2 2
ﬁLfﬁ
m T

Hl:‘u.l_‘u2>d0 RR:Z*ZZa

Hy:p —u, <d,g RR:z* < —2z,

Hl:‘ul—ﬂz#:do RR: |Z*|2Zg
2

2 2
c. Constructing the C.I. ((9? —y) + za f‘:n—l + %) foru, — u,
2

i. Can think of this as (p.e. %(crit value)(s.e. estimator) )
2. Large-Sample Approx. 2-Sample Z-Test with C.l. —comparing 2 population means
(LABEL EACH)
a. Assumptions
i. 2independent samples
ii. Comparing means
iii. Approximate normality for both samples (of both sampling distributions
of sample means)
iv. Both with unknown, unequal, variances (n,m > 40)
b. Summary

Large Sample
Approx. 2-Sample
Z-Test with C.I.

Test Stat ., X—y—d,
2

Hi:py —uy >d, RR:z* > z,

Hi:py —uy, <dg RR:z" < —z,

Hl:,u.l—ﬂz#:do RR: |Z*|ZZg
2
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c. Constructingthe C.l. [ (x —y) £ za ;1 + ;2 for u, — u,
2

i. Can think of this as (p.e. +(crit value)(s.e. estimator) )

3. Example 1 — (Textbook Chapter 9, Exercise 10) — An experiment was performed to
compare the fracture toughness of high-purity 18 Ni maraging steel with commercial-
purity steel of the same type (Corrosion Science, 1971: 723 — 736). For 32 specimens, the
sample average toughness was 65.6 for the high-purity steel, whereas for the 38
specimens of commercial steel 59.8. Because the high-purity steel is more expensive, its
use for a certain application can be justified only if its fracture toughness exceeds that of
commercial purity steel by more than 5. Suppose that both toughness distributions are
normal with the standard deviation of the high-purity steel known to be 1.2 and the
standard deviation of the commercial steel known to be 1.1. Test this at an alpha
significance level of .001.

a. What is the appropriate test to use here? Justify your claim by confirming the
assumptions are met.
What are the null and alternative hypotheses?
Calculate the test stat and the reject region. What is your conclusion at the alpha
significance level stated?

d. Calculate the p-value. What is your conclusion at the alpha significance level
stated?

e. What is a Type | error in context in this case? What is a Type Il error in context in
this case?

4., Example 2 — Suppose that instead we knew only that the sample standard deviation of
the high-purity steel was known to be 1.2 and the sample standard deviation of the
commercial steel was known to be 1.1. Suppose also that instead of 32 high-purity steel
specimens we had 41, and instead of 38 specimens of commercial steel we had 52. How
would our test change?

Lecture — Ch 9 Lecture 2 - Slides 10 — 19 (12/3/18)

1. Example 2 —Suppose that instead we knew only that the sample standard deviation of
the high-purity steel was known to be 1.2 and the sample standard deviation of the
commercial steel was known to be 1.1. Suppose also that instead of 32 high-purity steel
specimens we had 41, and instead of 38 specimens of commercial steel we had 52. How
would our test change?

2. Two-Sample t-test - comparing 2 population means (LABEL EACH)

a. Assumptions
i. 2independent samples
ii. Comparing means
iii. Approximate normality for both samples (of both sampling distributions
of sample means)
iv. Both with unknown, unequal, variances (small m & n (<40) )
b. Summary
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2-Sample t-Test with C.I.

Test Stat

Withd.f.v = —— -

(always round v down,
regardless of decimal)

Hl:#l - 'UZ > do RR: t* 2 ta’v

Hl:ﬂl - Mz < do RR: t* S _ta'v

HI:MI_MZ ido RR: |t*| ZtE‘U
2’

2 2
c. Constructing the C.1. ((3? —y)*ta, % + %) for uy — u,
> \I

i. Can think of this as (p.e. *(crit value)(s.e. estimator) )

3. Pooled t-test - comparing 2 population means (LABEL EACH)

a. Assumptions

i. 2independent samples

ii. Comparing means

20

iii. Approximate normality for both samples (of both sampling distributions

of sample means)

iv. Both with unknown variances (small m & n ), but known that ¢ = ¢
o2 (equal variance).

b. Summary

Pooled t-Test with C.I.

Test Stat

XY —do
1 1
Sp ﬁ + E
. 1 -1
with Sz% = mrin—z 812 mr-:n—z

Hytpy —pp > dy

Hyrpy —up < dy
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Hy:py — pp # dy

RR: |t*]| = ta
§,m

+n-2

c. Constructing the C.I. <(JE —y)*ta, . .S, $+ %) foruy — u,
> \/

Can think of this as (p.e. (crit value)(s.e. estimator) )

4. Example 3 (Textbook Ch 9, Exercise 25) — Low-back pain (LBP) is a serious health
problem in many industrial settings. The article “Isodynamic Evaluation of Trunk
Muscles and Low-Back Pain Among Workers in a Steel Factory” (Ergonomics, 1995:
2107-2117) reported the accompanying summary data on lateral range of motion (in
degrees) for a sample without a history of LBP and another sample with a history of this

malady:
Condition Sample Size Sample Mean Sample SD
No LBP 28 91.5 5.5
LBP 31 88.3 7.8
a. What is the appropriate test to use here if we want to test whether lateral

Lecture — Ch

motion differs for the two conditions? Justify your claim by confirming the
assumptions are met.

What are the null and alternative hypotheses?

Calculate the test stat and the reject region. What is your conclusion at the alpha
significance level of .10?

Calculate the p-value. What is your conclusion at the alpha significance level of
15?7

What is a Type | error in context in this case? What is a Type Il error in context in
this case?

Calculate a 90% confidence interval for the difference between population mean
extent of lateral motion for the two conditions. Does the interval suggest that
population mean lateral motion differs for the two conditions? Is the message
different if a confidence level of 95% is used?

How would this example change if for some reason we assumed that the 2
populations had the same variance?

9 Lecture 3 - Slides 20 — 29 (12/5/18)

1. Independent Samples vs Matched Pairs (linking factor)
2. Example 1 — Determine whether the samples in the following examples are
independent or matched pairs:

a. Researchers are interested in testing the effect of drinking alcohol on driving.
So, they measure the time taken for 30 subjects each to complete a driving
course. Then, each subject drinks 2 beers in 5 minutes and the researcher
times the driving course again.
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b. Researchers are interested in testing the effect of drinking alcohol on driving.
So, they randomly select 30 U.S. males to complete a timed driving course.
Then, they randomly select another 30 males to each drink 2 beersin 5
minutes and take the driving course.

c. Researchers are interested in testing the effect of drinking alcohol on driving.
So, they randomly select 30 females and measure the time taken for each to
complete a driving course. The goal of the study is to see if female times are
lower than the national average of 1.34 minutes.

3. Paired t-test - comparing pop means (LABEL HOW YOU TAKE THE DIFFERENCE )

a. Inference is based on the average of the differences, not the difference of
the averages!!

b. Assumptions

i. 2samples NOT independent (have some linking factor)
ii. Comparing means
iii. The sample of differences comes from a normal population (CLT: if n
> 30 then always safe to use the test regardless of the shape of the
distribution. If n < 30, then can check the shape of the distribution
with a histogram to ensure that it’s approx. normal)
c. Summary

Paired t-Test with C.I.

Test Stat ., Xg—dg
U =——
2d

Vn

Withd.f.=n—-1

Hl:,u,d > dO RR: t* > ta,n—l

Hl:,u,d < dO RR: t* < _ta,n—l

Hlﬂl,ld#—'do RR: |t*| Ztﬁ’n—l
2’

Sd

d. Constructing the C.I. (xd + tg‘n_l \/ﬁ) for ugy

i. Can think of this as (p.e. *(crit value)(s.e. estimator) )
4. 2 Sample Proportion Z-test - comparing pop proportions (LABEL EACH)
a. Assumptions
i. 2independent samples
ii. Comparing proportions
iii. mp;,m(1—p;),np,,n(1—7p;) =10
b. Summary

2-Sample Proportion Z-test with
C..
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Test Stat 7t = D1 — P2 — Po
A (1 1
\/P(l—P)(mW)
ithd = /7= 4+ —— 5
withp = man P1 ¥ i P2
Hi:py —p2 > Do RR:z* = z,

Hi:py —p2 <po

RR:z" < —z,

Hi:py —p2 # po

RR: |z*| = za
2

m

23

c. Constructing the C.1. ((1’9} -py) ZE\[pAl(l_pAl) + @(171—@)) forp; —p;
2

i. Can think of this as (p.e. *(crit value)(s.e. estimator) )
5. Hypothesis Testing Flowchart — When to use each test
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l.m/ I.W/ 2w

e 4

13.844
14.573
15.308

0.004
0.103
0.352
0.711

1.145
1.635
2,167

3.940
4.575

—_—
x.’,-
o
90 10 05 025 01 005
0016 2.706 3.843 5.025 6.637 7.882
0.211 4.605 5992 7.378 9.210 10597
0.584 6.251 7815 9.348 11.344 12.837
1.064 7179 9.488 11.143 13.277 14,860
1.610 9.236 11.070 12.832 15.085 16.748
2.204 10.645 12.592 14.440 16.812 18.548
2.833 12.017 14.067 16.012 18.474 20276
3.490 13.362 15.507 17.534 20,090 21.954
4.168 14.684 16.919 19.022 21.665 23,587
4.865 15.987 18.307 20.483 23.209 25.188
5.578 17.275 19.675 21.920 24.724 26.755
6.304 18.549 21,026 23.337 26.217 28.300
7.041 19.812 22.362 24.735 27.687 29.817
7.790 21.064 23.685 26.119 29.141 31.319
8.547 22307 24.996 27.488 30.577 32.799
9.312 23.542 26.296 28.845 32.000 34.267
10.085 24,769 27.587 30.190 33.408 35.716
10.865 25.989 28.869 31.526 34,805 37.156
11.651 27.203 30.143 32.852 36.190 38.580
12.443 28.412 31.410 34.170 37.566 39.997
13.240 29.615 32.670 35.478 38.930 41.399
14.042 30.813 33.924 36.781 40.289 42.796
14.848 32.007 35.172 38.075 41,637 44,179
15.659 33.196 36.415 39.364 42,980 45.558
16.473 34.381 37.652 40.646 44313 46.925
17.292 35.563 38.885 41.923 45.642 48.290
¥ 43,194 46.962 49.642
44.461 48278 50.993
45772 49,586 52.333
46.979 50.892 53.672
48.231 52.190 55.000
49.480 53.486 56.328
50.724 54,774 57.646
51.966 56.061 58.964
53.203 57.340 60.272
54.437 58.619 61.581
55.667 59.891 62.880
56.896 61.162 64.181
58.119 62.426 65.473
59.342 63.691 66.766
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A6 Appendix Tables

®@ =PE=2)
Table A.3 Standard Normal Curve Areas Standard normal density cury,

z 00 01 02 03 04
-34 L0003 .0003 0003 .0003 .0003
-33 0005 0005 L0005 0004 .0004
-32 0007 0007 0006 0006 0006 g ; :
| 31 10010 0009 0009 .0009 .0008 0008 o011 0011 0010 0010
-3, 0013 0013 0013 0012 0012 0011 .
b G 0015 0015 0014 0014
.0019 0018 0017 0017 0016 0016 : 031 10020 0019
10026 0025 10024 10023 0023 0022 0021 i i ol
.0035 0034 0033 0032 0031 10030 10029 pn: o -0036
' 0045 0044 0043 0041 0040 0039 : . :
.0060 10059 0057 0055 0054 .0052 0051 . .0038
0078 0075 0073 0071 10069 .0068 .0066 0064
0102 .0099 .0096 0094 0091 .0089 .0087 0084
0132 0129 0125 0122 0119 0116 0113 0110
0170 0166 0162 0158 0154 0150 0146 0143
0217 0212 0207 0202 0197 0192 0188 0183
0274 .0268 0262 0256 10250 0244 0239 0233
‘ 0336 10329 0322 0314 0307 .0301 0294
( .0409 0401 0392 0384 .0375 0367
0505 0495 0485 0475 0465 0455
§ 0606 0594 0582 0571 10559
0735 0722 0708 0694 0681
L0885 0869 0853 0838 0823
.1056 .1038 .1020 .1003 10985
1251 1230 1210 1190 1170

.1469 .1446 .1423 .1401 1379
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Appendix Tables A-7
Table A.3 Standard Normal Curye Areas (cont.)

D) =P2zZ=< 2)

z .00 01 02

.03 .04
= 5000 5040 sp e # i % i1
: . . .5080 5120 51
o 5398 5438 5478 [ 55?2 ;;gg 5239 5279 5319 5359
02 5793 5832 .5871 591 3 . .5636 5675 5714 5753
5910 .5948 .5987 6026

03 B T s Bm T Hg e ¢ 4D e
0.4 -:;f: 6591 6628 6664 6700 6736 6772 6808 .2‘3 gzsz;;
g.g -;,257 .ggg(l) .6985 7019 7054 7088 7123 7157 7190 7224
& il it 7324 7357 7389 7422 7454 7486 7517 7549
; & . 7642 7673 7704 7734 7764 7794 7823 7852
8 i 7910 7939 7967 7995 8023 8051 8078 8106 8133
.9 8186 8212 8238 8264 8289 8315 8340 8365 8389
‘ 8438 8461 8485 8508 8531 8554 8577 8599 8621

8665 8686 8708 8729 8749 8770 8790 8810 8830

8869 .8888 8907 8925 8944 8962 8980 8997 9015
19049 9066 9082 9099 9115 9131 9147 9162 9177
[ 9222 9236 9251 9265 9278 9292 9306 9319

9357 9370 9382 9394 9406 9418 9429 9441
9474 9484 9495 9505 9515 9525 9535 9545
9573 9616 9625 9633

.9706
9767

.9817
9857
.9890
9916
9936

9952
.9964
9974
.9981
9986

.9990
.9993
9995
9997
9998




