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Agendas 
 
Lecture – Quiz #1 (9/17/18) 
 
Lecture – Quiz #1 Review (9/19/18)  
 
Lecture – Ch 3 Lecture 1 - Slides 1 – 14 (9/21/18) 
 

1. Random Variables – numerical representation of an outcome of a random 
experiment  

2. Discrete vs Continuous Random Variables (the support of the RV & how to 
calculate probabilities)  

3. Discrete Random Variables – pdf, 2 key properties of all pdfs  
4. Forms of Discrete Random Variables – Table (Info Given), Probability 

Histogram, Formula  
 
Lecture – Ch 3 Lecture 2 Slides 15 – 25 (9/24/18) 
 

1. Expected Value – Definition, Constant Rule, Function Rule (with example), 
𝐸[𝑋2 + 3𝑋 + 5] = 𝐸[𝑋2] + 3𝐸[𝑋] + 5, and 𝐸[𝑐] = 𝑐 

2. Variance & Standard Deviation – Definition as 𝐸[(𝑋 − 𝜇)2], shortcut 
formula (with proof), 𝑉[𝑋] = 𝑎2𝑉[𝑋] 

3. Bernoulli Distribution 𝑝(𝑥) = 𝑝𝑥(1 − 𝑝)1−𝑥 𝑥 = 0,1, 1 trial with 2 possible 
outcomes (coin flip, but don’t have to have equal probability of success and 
failure), 𝑋~𝐵𝑒𝑟𝑛(𝑝), proofs of expectation and variance 𝐸[𝑋] = 𝑝, 𝑉[𝑋] =
𝑝(1 − 𝑝) 

4. Binomial Distribution – extension of Bernoulli distribution, FITS, proof of 
mean 𝐸[𝑋] = 𝑛𝑝, just state the variance 𝑉[𝑋] = 𝑛𝑝(1 − 𝑝) 

 
Lecture – Ch 3 Lecture 3 Slides 26 – 34 (9/26/18) 
 

1. Show that if 𝑌~𝐵𝑖𝑛(𝑛, 𝑝) and 𝑍~𝐵𝑖𝑛(𝑛, 1 − 𝑝), then 𝑝(𝑦 = 𝑛 − 𝑦) = 𝑃(𝑧 = 𝑦). 
2. Consider the RV 𝑌~𝐵𝑖𝑛(𝑛, 𝑝). Recursively define the 𝑝(𝑦). 
3. Derive the variance of any RV 𝑌~𝐵𝑖𝑛(𝑛, 𝑝) 
4. Geometric Distribution  

a. Context 
b. Proof of Valid pdf 
c. Derivation of expectation 
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d. The memoryless property for the Geometric distribution states that if 
𝑋~𝐺𝑒𝑜(𝑝), with 𝑖, 𝑗 positive numbers, then 𝑃(𝑋 ≥ 𝑖 + 𝑗|𝑋 ≥ 𝑖) = 𝑃(𝑋 ≥ 𝑗).  

i. First, determine the cumulative distribution function for a geometric 
distribution (hint: the cumulative distribution function 𝐹(𝑥) =
𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑦𝑜𝑢 𝑔𝑒𝑡 𝑎 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑎𝑡 𝑜𝑟 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 𝑥𝑡ℎ𝑡𝑟𝑖𝑎𝑙) = 1 −
𝑃(𝑓𝑖𝑟𝑠𝑡 𝑥 𝑡𝑟𝑖𝑎𝑙𝑠 𝑎𝑟𝑒 𝑎𝑙𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠) )  

ii. Now, prove that the Geometric distribution indeed exhibits the 
memoryless property. 

5. Hypergeometric Distribution 
a. Context 
b. Proof of valid pdf 

 
 

𝑋~𝐺𝑒𝑜(𝑝) 
𝑝(𝑥) = (1 − 𝑝)𝑥−1𝑝     𝑥 = 1,2,3,… 

𝐸[𝑋] =
1

𝑝
    𝑉[𝑋] =

1 − 𝑝

𝑝2
 

 
𝑋~𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜(𝑁,𝑀, 𝑛) 

𝑝(𝑥) =
(
𝑀
𝑥
)(
𝑁 −𝑀
𝑛 − 𝑥

)

(
𝑁
𝑛
)

     𝑥 = 0,1,2,3,…𝑛      𝑛 ≤ 𝑀 ≤ 𝑁       𝑛 ≤ 𝑁 −𝑀 

𝐸[𝑋] =
𝑛𝑀

𝑁
    𝑉[𝑋] = 𝑛 (

𝑀

𝑁
) (
𝑁 − 𝑀

𝑁
)(
𝑁 − 𝑛

𝑁 − 1
) 

 

Lecture – Ch 3 Lecture 4 Slides 35 – 45 (9/28/18) 
 

1. Geometric Distribution  
a. Context 
b. Proof of Valid pdf 
c. Derivation of expectation 
d. The memoryless property for the Geometric distribution states that if 

𝑋~𝐺𝑒𝑜(𝑝), with 𝑖, 𝑗 positive numbers, then 𝑃(𝑋 ≥ 𝑖 + 𝑗|𝑋 ≥ 𝑖) = 𝑃(𝑋 ≥ 𝑗).  
i. First, determine the cumulative distribution function for a geometric 

distribution (hint: the cumulative distribution function 𝐹(𝑥) =
𝑃(𝑋 ≤ 𝑥) = 𝑃(𝑦𝑜𝑢 𝑔𝑒𝑡 𝑎 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑎𝑡 𝑜𝑟 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 𝑥𝑡ℎ𝑡𝑟𝑖𝑎𝑙) = 1 −
𝑃(𝑓𝑖𝑟𝑠𝑡 𝑥 𝑡𝑟𝑖𝑎𝑙𝑠 𝑎𝑟𝑒 𝑎𝑙𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠) )  

ii. Now, prove that the Geometric distribution indeed exhibits the 
memoryless property. 

2. Hypergeometric Distribution 
a. Context 
b. Proof of valid pdf 

3. Negative Binomial Distribution 
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a. Context 
4. Poisson Distribution 

a. Proof of valid pdf 
b. Proof of mean & variance 

 
𝑋~𝐺𝑒𝑜(𝑝) 

𝑝(𝑥) = (1 − 𝑝)𝑥−1𝑝     𝑥 = 1,2,3,… 

𝐸[𝑋] =
1

𝑝
    𝑉[𝑋] =

1 − 𝑝

𝑝2
 

 
𝑋~𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜(𝑁,𝑀, 𝑛) 

𝑝(𝑥) =
(
𝑀
𝑥
)(
𝑁 −𝑀
𝑛 − 𝑥

)

(
𝑁
𝑛
)

     𝑥 = 0,1,2,3,…𝑛      𝑛 ≤ 𝑀 ≤ 𝑁       𝑛 ≤ 𝑁 −𝑀 

𝐸[𝑋] =
𝑛𝑀

𝑁
    𝑉[𝑋] = 𝑛 (

𝑀

𝑁
) (
𝑁 − 𝑀

𝑁
)(
𝑁 − 𝑛

𝑁 − 1
) 

 
 

𝑋~𝑁𝑒𝑔𝑏𝑖𝑛(𝑟, 𝑝) 

𝑝(𝑥) = (
𝑥 − 1
𝑟 − 1

)𝑝𝑟(1 − 𝑝)𝑥−𝑟     𝑥 = 𝑟, 𝑟 + 1, 𝑟 + 2,…       0 ≤ 𝑝 ≤ 1   

𝐸[𝑋] =
𝑟

𝑝
    𝑉[𝑋] =

𝑟(1 − 𝑝)

𝑝2
 

 
𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) 

𝑝(𝑥) =
𝑒−𝜆𝜆𝑥

𝑥!
     𝑥 = 0,1,2,…       0 < 𝜆   

 
𝐸[𝑋] = 𝑉[𝑋] = 𝜆     

 

Lecture – Problem Session for Ch 3 (10/1/18)  
 

Lecture – Ch 4 Lecture 1 Slides 1 – 5 (10/3/18) 
 

1. Finish Review Question 4 
2. Probability Density Functions, Probability Distribution Functions, and Probability Mass 

Functions 
3. 2 Distinguishing properties of continuous random variables – support is an interval & 

𝑃(𝑋 = 𝑥) = 0 for any singular value of x in the support.  

4. Finding probabilities using a pdf ( 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 ) 

5. 2 Properties of every legitimate pdf 𝑓(𝑥) ≥ 0 ∀𝑥 𝜖 𝜒 & ∫ 𝑓(𝑥)
∞

−∞
= 1 

6. Verify whether the following function is a valid probability density function on the given 
support 
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𝑓(𝑥) = {
. 075𝑥 + .2   3 ≤ 𝑥 ≤ 5
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

7. Verify whether the following function is a valid pdf on the given support 

𝑓(𝑥) = {𝑥 − 4   1 ≤ 𝑥 ≤ 4 − √11
0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 
8. Verify whether the following function is a valid pdf on the given support 

𝑓(𝑥) =

{
 
 

 
 

1

25
𝑦    0 ≤ 𝑦 < 5

2

5
−
1

25
𝑦    5 ≤ 𝑦 ≤ 10

0     𝑦 < 0 𝑜𝑟 𝑦 > 10

 

9. Consider the function 𝑓(𝑥) = {
𝑘𝑥3 +

𝑘

2
𝑥2     0 ≤ 𝑥 ≤ 2

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

a. Find k such that the above function is a valid probability density function on the 
given support. 

b. What is the probability that 𝑥 𝜖 (0,1)? Is this the same as the probability 
𝑥 𝜖 [0,1]? Why is this so? 
 

 
Lecture – Ch 4 Lecture 2 Slides 6 – 19 (10/5/18) 

 

1. Uniform Distribution – Context, pdf (∫ 𝑐
𝐵

𝐴
𝑑𝑥) 

2. CDF 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓(𝑦)𝑑𝑦
𝑥

−∞
 (for 𝑋~𝑈(𝑎, 𝑏) 𝐹(𝑥) =

𝑥−𝑎

𝑏−𝑎
 )  

3. Percentiles 

4. Expectation and Variance -> Go through uniform distribution (𝐸[𝑋] =
𝑎+𝑏

2
  𝑉[𝑋] =

(𝑏−𝑎)2

12
)  

5. Suppose that Y has a uniform distribution over the interval [0,1].  
a. Prove that the distribution of Y is valid 
b. Find 𝐹(𝑦) 
c. Show that 𝑃(𝑎 ≤ 𝑌 ≤ 𝑎 + 𝑏), for 𝑎 ≥ 0, 𝑏 ≥ 0, and 𝑎 + 𝑏 ≤ 1 depends only 

upon the value of 𝑏. 
d. What is the third moment, i.e. 𝐸(𝑋3)? 
e. What is 𝐸[𝑋3 − 𝑋2 − 1]? 

6. A telephone call arrived at a switchboard at random within a 1-minute interval. The 
switch board was fully busy for 15 seconds into this 1-minute period. What is the 
probability that the call arrived when the switchboard was not fully busy? 

7. Consider the following pdf 

𝑓(𝑥) = {

𝑥       0 ≤ 𝑥 ≤ 1
1

2
     1 < 𝑥 ≤ 2

0    𝑜.𝑤.

 

a. Is the distribution differentiable everywhere? How about continuous? 
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b. Find 𝐹(𝑥) 
8. The cycle time for trucks hauling concrete to a highway construction site is uniformly 

distributed over the interval 50 to 70 minutes.  
a. What is the probability that the cycle time exceeds 65 minutes if it is known that 

the cycle time exceeds 55 minutes? 
b. Calculate the IQR of this dataset 

 

Lecture – Ch 4 Lecture 3 Slides 20 – 28 (10/8/18) 
 
1. The cycle time for trucks hauling concrete to a highway construction site is uniformly 

distributed over the interval 50 to 70 minutes.  
a. What is the probability that the cycle time exceeds 65 minutes if it is known 

that the cycle time exceeds 55 minutes? 
b. Calculate the IQR of this dataset 

2. Normal Distribution (𝑓(𝑥) =
1

𝜎√2𝜋
𝑒
−(𝑥−𝜇)2

2𝜎2 ) 

3. Standardization 
4. Empirical Rule 
5. Let Y be normally distributed with mean 4 and variance 1. Find the following:  

a. The range of values seen as “typical” 
b. The 84th percentile 
c. What percentage of observations fall below 2? 
d. What percentage of points fall above 5?   

6. Let X be normally distributed with mean 10 and standard deviation 5. Find the 
following probabilities:  

a. P(X ≤ 8) 
b. P(X ≥ 11) 
c. The 86th percentile 
d. Q1 of this distribution 
e. The median of this distribution 
f. The value such that 16% of the data fall above this point.  
g. P(1 ≤ |X|) 

7. Binomial Approximation – Conditions (𝑛𝑝 ≥ 10 and 𝑛(1 − 𝑝) ≥ 10) & Distribution 

(𝑋~𝑁(𝑛𝑝, 𝑛𝑝(1 − 𝑝))) 

8. Continuity Correction – using a continuous RV to approximate a discrete random 

variable (𝑃(𝑋 ≥ 𝑎) = 𝑃(𝑋 ≥ 𝑎 − 0.5)) 

9. Suppose that 10% of all steel shafts produced by a certain process are 
nonconforming but can be reworked (rather than having to be scrapped). Consider a 
random sample of 200 shafts, and let X denote the number among these that are 
nonconforming and can be reworked. What is the (approximate) probability that X is  

a. At most 30? 
b. Less than 30? 
c. Between 15 and 25 (inclusive)? 
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Lecture – Ch 4 Lecture 4 Slides 29 – 36 (10/10/18) 
 

1. Binomial Approximation – Conditions (𝑛𝑝 ≥ 10 and 𝑛(1 − 𝑝) ≥ 10) & Distribution 

(𝑋~𝑁(𝑛𝑝, 𝑛𝑝(1 − 𝑝))) 

2. Continuity Correction – using a continuous RV to approximate a discrete random 

variable (𝑃(𝑋 ≥ 𝑎) = 𝑃(𝑋 ≥ 𝑎 − 0.5)) 

a. The idea: Maximize the area that you are considering under the normal 
distribution such that the inequality still represents the same possible values of X 
under the binomial distribution.   

i. P(X ≤ 120) = P(X ≤ 120.5)  
ii. P(X < 120) = P(X ≤ 119) = P( X≤ 119.5)  

iii. P(130 ≤ X ≤ 145) = P( 129.5 ≤ X ≤ 145.5 )  
3. Suppose that 10% of all steel shafts produced by a certain process are nonconforming 

but can be reworked (rather than having to be scrapped). Consider a random sample of 
200 shafts, and let X denote the number among these that are nonconforming and can 
be reworked. What is the (approximate) probability that X is  

a. At most 30? 
b. Less than 30? 
c. Between 15 and 25 (inclusive)? 

4. Gamma Function & Its Properties 

a. Γ(𝛼) = ∫ 𝑥𝛼−1𝑒−𝑥𝑑𝑥
∞

0
 (for 𝛼 > 0) 

b. For any 𝛼 > 1, Γ(𝛼) = (𝛼 − 1)Γ(𝛼 − 1) 
c. For any positive integer n, Γ(𝑛) = (𝑛 − 1)! 

d. Γ (
1

2
) = √𝜋 

e. Evaluate the following: 

i. ∫ 𝑥3𝑒−𝑥𝑑𝑥
∞

0
 

ii. ∫ 𝑥𝑒−
1

3
𝑥𝑑𝑥

∞

0
 

iii. ∫ 𝑥2𝑒−
1

3
𝑥𝑑𝑥

∞

0
 

iv. ∫ 𝑥𝑒−
1

3
𝑥2𝑑𝑥

∞

0
 

5. Gamma Distribution (𝑋~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽)) 

a. Proof of valid pdf (𝑓(𝑥) =
1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒

−
𝑥

𝛽   𝑥 ≥ 0) with 𝛼, 𝛽 > 0 

b. Derivation of expectation and Variance (𝐸(𝑋) = 𝛼𝛽 and 𝑉(𝑋) = 𝛼𝛽2) 

6. Exponential Distribution (𝑋~𝐸𝑥𝑝(𝜆)) 

a. pdf (𝑓(𝑥) =  𝜆𝑒−𝜆𝑥   𝑥 ≥ 0) with 𝜆 > 0 (If 𝑋~𝐺𝑎𝑚𝑚𝑎(1, 𝛽), look familiar?) 

b. cdf (𝐹(𝑥) =  1 − 𝑒−𝜆𝑥   𝑥 ≥ 0) 

c. Expectation and Variance (𝐸(𝑋) =
1

𝜆
 and 𝑉(𝑋) =

1

𝜆2
)   

d. Memoryless Property 𝑃(𝑋 ≥ 𝑡 + 𝑡0|𝑋 ≥ 𝑡0) = 𝑃(𝑋 ≥ 𝑡) = 𝑒
−𝜆𝑡 

7. Chi-Squared Distribution (𝑋~𝜒2(𝜈)) 
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a. pdf (𝑓(𝑥) =
1

2𝜈/2Γ(
𝜈

2
)
𝑥(

𝜈

2
)−1𝑒−

𝑥

2    𝑥 ≥ 0) with 𝜈 = d. f. (If 𝑋~𝐺𝑎𝑚𝑚𝑎(
𝜈

2
, 2), look 

familiar?) 
b. Expectation and Variance (𝐸(𝑋) = 𝜈 and 𝑉(𝑋) = 2𝜈) 

 

Lecture – Ch 4 Lecture 5 Slides 37 – 46 (10/12/18) 
 

1. Gamma Distribution (𝑋~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽)) 

a. Proof of valid pdf (𝑓(𝑥) =
1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒

−
𝑥

𝛽   𝑥 ≥ 0) with 𝛼, 𝛽 > 0 

b. Derivation of expectation and Variance (𝐸(𝑋) = 𝛼𝛽 and 𝑉(𝑋) = 𝛼𝛽2) 

2. Chi-Squared Distribution (𝑋~𝜒2(𝜈)) 

a. pdf (𝑓(𝑥) =
1

2𝜈/2Γ(
𝜈

2
)
𝑥(

𝜈

2
)−1𝑒−

𝑥

2    𝑥 ≥ 0) with 𝜈 = d. f. (If 𝑋~𝐺𝑎𝑚𝑚𝑎(
𝜈

2
, 2), look 

familiar?) 
b. Expectation and Variance (𝐸(𝑋) = 𝜈 and 𝑉(𝑋) = 2𝜈) 

3. Exponential Distribution (𝑋~𝐸𝑥𝑝(𝜆)) 

a. pdf (𝑓(𝑥) =  𝜆𝑒−𝜆𝑥   𝑥 ≥ 0) with 𝜆 > 0 (If 𝑋~𝐺𝑎𝑚𝑚𝑎 (1,
1

𝜆
), look familiar?) 

b. cdf (𝐹(𝑥) =  1 − 𝑒−𝜆𝑥   𝑥 ≥ 0) 

c. Expectation and Variance (𝐸(𝑋) =
1

𝜆
 and 𝑉(𝑋) =

1

𝜆2
)   

d. Memoryless Property 𝑃(𝑋 ≥ 𝑡 + 𝑡0|𝑋 ≥ 𝑡0) = 𝑃(𝑋 ≥ 𝑡) = 𝑒
−𝜆𝑡 

4. Probability Plots 
a. Motivation -> Check if sample came from a certain type of distribution 
b. Creating the Q-Q (quantile-quantile plot) 

i. Sort the data from smallest to largest 

ii. For 𝑖 = 1,2,… , 𝑛,   𝑥(𝑖) is the 𝑝𝑖 =
100(𝑖−0.5)

𝑛
𝑡ℎ sample percentile 

iii. Then calculate the theoretical percentiles of a standard normal 
distribution for each percentile (𝑃(𝑧 ≤ 𝑧𝑖) = 𝑝𝑖) 

iv. Plot the 𝑧𝑖 on the x-axis and the 𝑥(𝑖) on the y-axis 

c. Exercise: Suppose a data set contains 10 observations that are sorted as follows:  
-1.91, -1.25, -0.75, -0.53, 0.20, 0.35, 0.72, 0.87, 1.40, 1.56 
 i.  Construct the Normality Plot (aka the Q-Q Plot)  
 ii. Describe the shape of the distribution 

d. Interpretation  
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i. Ideally on the 45o line → implies normality 
ii. If the right tail bends upward, then distribution of the observations has a 

heavy right tail 
iii. If the right tail bends downward, then distribution of the observations 

has a light right tail 
iv. If the left tail bends upward, then distribution of the observations has a 

light left tail 
v. If the left tail bends downward, then distribution of the observations has 

a heavy left tail 
5. Beta Distribution 

a. Beta Function (∫ 𝑥𝑎−1(1 − 𝑥)𝑏−1𝑑𝑥
1

0
=

Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
) 

b. Proof of valid pdf (𝑓(𝑥) =
Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1  0 ≤  𝑥 ≤ 1) with 𝛼, 𝛽 > 0  

c. Expectation and Variance (𝐸(𝑋) =
𝛼

𝛼+𝛽
 and 𝑉(𝑋) =

𝛼𝛽

(𝛼+𝛽)2(𝛼+𝛽+1)
) 

6. (Weibull Distribution) 
7. (Lognormal Distribution) 

 

Lecture – Problem Session for Ch 4 (10/15/18)  
 
Lecture – Quiz #2 (10/17/18) 
 
Lecture – Quiz #2 Review (10/19/18)  
 

Lecture – Ch 6 Lecture 1 Slides 1 – 11 (10/22/18) 
 

1. Beta Distribution 

a. Beta Function (∫ 𝑥𝑎−1(1 − 𝑥)𝑏−1𝑑𝑥
1

0
=

Γ(𝑎)Γ(𝑏)

Γ(𝑎+𝑏)
) 

b. Proof of valid pdf (𝑓(𝑥) =
Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)
𝑥𝛼−1(1 − 𝑥)𝛽−1  0 ≤  𝑥 ≤ 1) with 𝛼, 𝛽 > 0  
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c. Expectation and Variance (𝐸(𝑋) =
𝛼

𝛼+𝛽
 and 𝑉(𝑋) =

𝛼𝛽

(𝛼+𝛽)2(𝛼+𝛽+1)
) 

2. General Introduction to Inference (Statistics Lifecycle) 
3. Point Estimator versus Estimate (Definition of a Statistic) 

4. Unbiased Estimator (𝐸(𝜃) = 𝜃) and bias (the difference) 
5. Example 1 – When X is a binomial RV with parameters n and p, is the sample proportion 

�̂� =
𝑋

𝑛
 an unbiased estimator of p? 

6. Mean Squared Error (MSE of an estimator = 𝐸 [(𝜃 − 𝜃)
2
] 

7. What happens to MSE when we have an unbiased estimator? 
8. Example 1 Continued – Find the MSE of the estimator X/n and show that as 𝑝 → 0 the 

MSE of the estimator approaches 0.   
9. Example 2 -  The reading on a voltage meter connected to a test circuit is uniformly 

distributed over the interval (𝜃, 𝜃 + 1), where 𝜃 is the true but unknown voltage of the 
circuit. Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample of readings from this voltage meter.  

a. Show that �̅� is a biased estimator of 𝜃 and find its bias 
b. Is the estimator 𝑋(𝑛) − 𝑋(1) unbiased? 

c. Which is a better estimator, 𝑋(𝑛) − 𝑋(1) or �̅�? 

d. Can we find a better estimator of 𝜃? 
 

Lecture – Ch 6 Lecture 2 Slides 12 – 28 (10/24/18) 
 

1. Measuring precision - standard error of an estimator (𝜎�̂� = √𝑉(𝜃)) 

2. Minimum Variance Unbiased Estimator (MVUE) 

3. Example 1 (Cont.) – Quantify the precision of the estimator �̂�1 =
𝑋

𝑛
. Which is a better 

estimator, �̂�1 =
𝑋

𝑛
 or �̂�2 =

𝑋1+𝑋2

2𝑛
 (assume 𝑋1, … , 𝑋𝑛 are i.i.d)?  

4. Method of Moments 
a. What are moments (𝜂𝑟 = 𝐸[𝑋

𝑟])  Gamma Distribution  
b. How to find estimators using the method of moments (Set  

𝜂1 =
1

𝑛
∑𝑋𝑖

𝑛

𝑖=1

 

 𝜂2 =
1

𝑛
∑𝑋𝑖

2

𝑛

𝑖=1

 

… 

𝜂𝑘 =
1

𝑛
∑𝑋𝑖

𝑘

𝑛

𝑖=1

 

Then, isolate for the parameters you are estimating 

c. Prove that the moment estimators for 𝑁(𝜇, 𝜎2) are �̂� = �̅� and 𝜎2 =
1

𝑛
∑ (𝑋𝑖 − �̅�)

2𝑛
𝑖=1  
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d. Prove the moment estimators for  𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) are �̂� =
�̅�2

(
1

𝑛
)∑ (𝑋𝑖−�̅�)2

𝑛
𝑖=1

 and �̂� =

(
1

𝑛
)∑ (𝑋𝑖−�̅�)

2𝑛
𝑖=1

�̅� 
 

e. Suppose that 𝑋1, … , 𝑋𝑛 are iid with common pdf 𝑓(𝑥) = {
(𝜃 + 1)𝑥𝜃 , 0 < 𝑥 < 1
0                       , 𝑜. 𝑤.

 

where 𝜃(> 0) is the unknown parameter. Derive an estimator for 𝜃 by the 
method of moments.  

5. Maximum Likelihood Estimation 

a. Likelihood function (𝐿(�⃑�)) 

b. If 𝑋~𝐵𝑖𝑛(𝑛, 𝜃) with n known, find 𝜃𝑀𝐿𝐸. 

c. Suppose 𝑋1, … , 𝑋𝑛 are iid 𝐵𝑖𝑛(𝑛, 𝜃) with n known, find 𝜃𝑀𝐿𝐸 
d. Suppose 𝑋1, … , 𝑋𝑛 are iid 𝑁(𝜇, 𝜎2), show that �̂�𝑀𝐿𝐸 = �̅� and 𝜎2𝑀𝐿𝐸 =

1

𝑛
∑ (𝑥𝑖 − �̅�)

2𝑛
𝑖=1  

6. The Invariance Principle for MLE’s (𝑔(𝜃)𝑀𝐿𝐸)̂ = 𝑔(𝜃𝑀𝐿𝐸)) (the function doesn’t even 

have to be one-to-one!) 
a. From Number 5, part (c), find the MLE for 𝜃2 − 5𝜃 + 2  
b. From Number 5, part (d), find the MLE for 𝜎 

 

Lecture – Problem Session for Ch 6 (10/26/18) 
 
 Lecture – Ch 7 Lecture 1 Slides 1 – 7 (10/29/18) 
 

1. MLE Review 
2. General Form Of Confidence Intervals (point est ± (critical value)(s.e. of point estimate) )  
3. Confidence Intervals vs Prediction Intervals 

4. Confidence Interval for Mean of Normal Population (�̅� ± 𝑧𝛼
2
(
𝜎

√𝑛
)) 

a. Interpretation 
b. Factors impacting the width 

 
 

Lecture – Halloween Jeopardy (10/31/18) 
 
Lecture – Ch 7 Lecture 2 Slides 1 – 19 (11/2/18) 
 

1. Confidence Intervals vs Prediction Intervals 
2. General Form Of Confidence Intervals (point est ± (critical value)(s.e. of point estimate) )  

3. Confidence Interval for Mean 𝜇 of Normal Population (�̅� ± 𝑧𝛼
2
(
𝜎

√𝑛
)) 

a. Interpretation 
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4. Margin of Error & Factors impacting this 

5. Minimum Sample Size (𝑛 = (𝑧𝛼
2

𝜎

𝑚
)
2
 ) (Caution: your book defines width, not m) 

6. Large sample (n > 40)  C.I. for the Mean 𝜇 (regardless of the distribution of the original 

distribution) (�̅� ± 𝑧𝛼
2
(
𝑠

√𝑛
)) 

7. Confidence Interval for Population Proportion (for large n, i.e. 𝑛�̂� ≥ 10 and 𝑛(1 − �̂�) ≥

10)   (�̂� ± 𝑧𝛼
2

√
�̂�(1−�̂�)

𝑛
) 

8. Example 1 – Consider a normal population distribution with the value of 𝜎 know.  

a. What is the confidence level for the interval �̅� ± 2.81
𝜎

√𝑛
 ? 

b. What is the confidence level for the interval �̅� ± 1.44
𝜎

√𝑛
 ? 

c. What value of  𝑧𝛼
2
 in the interval �̅� ± 𝑧𝛼

2
(
𝜎

√𝑛
) results in a confidence level of 

99.7%? (hint: 1 −
𝛼

2
=

1+𝐶𝐶

2
)  

d. What value of  𝑧𝛼
2
 in the interval �̅� ± 𝑧𝛼

2
(
𝜎

√𝑛
) results in a confidence level of 75%? 

9. Example 2 – On the basis of extensive tests, the yield point of a particular type of mild 
steel-reinforcing bar is known to be normally distributed with 𝜎 = 100. The 
composition of bars has been slightly modified, but the modification is not believed to 
have affected either the normality or the value of 𝜎. 

a. Assuming this to be the case, if a sample of 25 modified bars resulted in a sample 
average yield point of 8439 lb, compute a 90% CI for the true average yield point 
of the modified bar.  

b. How would you modify the interval in part (a) to obtain a confidence level of 
92%? 

10. Determine the confidence level for each of the following large sample one-sided 
confidence bounds:  

a. Upper bound: �̅� + (.84) (
𝑠

√𝑛
) 

b. Lower bound: �̅� − (2.05) (
𝑠

√𝑛
) 

c. Upper bound: �̅� + (.67) (
𝑠

√𝑛
) 

 

Lecture – Ch 7 Lecture 3 Slides 20 – 37 (11/5/18) 
 

1. Determine the confidence level for each of the following large sample one-sided 
confidence bounds:  

a. Upper bound: �̅� + (.84) (
𝑠

√𝑛
) 

b. Lower bound: �̅� − (2.05) (
𝑠

√𝑛
) 

c. Upper bound: �̅� + (.67) (
𝑠

√𝑛
) 

2. 1-sided confidence intervals 
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3. What if we don’t know sigma and we have a small sample size (n < 40)? (�̅� ± 𝑡𝛼
2
,𝑛−1

𝑠

√𝑛
)  

4. Example – Determine the t critical value for the two-sided confidence interval in each of 
the following situations:  

a. Confidence level = 95%, df. = 10 
b. Confidence level = 99%, df. = 15 
c. Confidence level = 99%, df. = 38 

5. Prediction Interval for future observation 𝑋𝑛+1 – data from a normal distribution with 

known variance (�̅� ± 𝑧𝛼
2
𝜎√1 +

1

𝑛
) 

6. Prediction Interval for future observation 𝑋𝑛+1 – data from a normal distribution with 

unknown variance (�̅� ± 𝑡𝛼
2
,𝑛−1𝑠√1 +

1

𝑛
) 

7. Confidence Interval for 𝜎2 from a normal distribution with unknown variance 

(
𝑣𝑠2

𝜒𝛼
2,𝑣

2 ,
𝑣𝑠2

𝜒
1−
𝛼
2,𝑣

2 ) (for 𝜎, just take the square root of the interval). 

8. Determine the following 
a. The 95th percentile of the Chi-Squared Distribution with 10 d.f. 
b. The P(10.98 ≤ 𝜒2 ≤ 36.78) where 𝜒2 has 22 d.f.  

 

Lecture – Problem Session for Ch 7 (11/7/18) 
 
Lecture – Quiz #3 (11/9/18) 
 

Lecture – Quiz #3 Review (11/12/18)  
 
Lecture – Ch 8 Lecture 1 - Slides 1 – 15 (11/14/18) 
 

1. Terminology 
a. Statistical Hypothesis → A claim about a population, whether it is about a single 

parameter, the values of several parameters, or the form of an entire probability 
distribution 

b. Hypothesis Test → An assessment of the evidence provided by a data set in favor 
of (or against) a hypothesis about a population 

c. Test Statistic → the sample statistic. We want to see if the sample statistic is 
consistent with a hypothesis on the corresponding population parameter. (the 
entire goal is to see if this difference is statistically significant at the alpha 
significance level).  

2. General Form of every Hypothesis test 
3. The flow of every hypothesis test → Think of it as a proof by contradiction. 
4. Two-sided vs one-sided alternatives 
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5. Example 1 – New Orleans is sinking. A study by the ASCE Journal of Hydrologic 
Engineering in 2016 cited that about 65% of New Orleans proper is at or below sea level. 
Hurricane Katrina highlighted the importance of levees in protecting the city. However, 
Professor Raymond Seed of the University of California, Berkeley, claims that during 
Katrina a surge of water estimated at 24 feet (about 10 feet higher than the levees along 
the city’s eastern flank), swept into New Orleans from the Gulf of Mexico, causing most 
of the flooding in the city. The city now has put forth a policy that levees must be at 
least 10 feet higher than resting water level. How can we study this problem?  

6. Types of Error 
a. Alpha (𝛼) = P(type I error) = P(reject H0 | H0 is true) 
b. Beta (𝛽) = P(type II error) = P(don’t reject H0 | H1 is true) 
c. Power of a test = 1 – 𝛽 
d. The goal: minimize alpha and beta. For a fixed alpha, we want the hypothesis test 

with the smallest beta.  
e. Trade-off between 𝛼 and 𝛽 → For fixed experiment (and sample size), decreasing 

alpha will increase beta, and vice versa.  
7. Example 1 Cont. – What is a type 1 error in this case? What is a type 2 error in this case? 

Given the natural trade-off between alpha and beta, how should you choose to weight 
these? 

8. Example 2 – Consider a population with the pdf 𝑁(𝜃, 1) where 𝜃 𝜖 ℝ is unknown. An 
experimenter wishes to test 𝐻0: 𝜃 = 5.5 vs 𝐻1: 𝜃 = 8 by collecting a random sample of 

�⃑� = (𝑋1, 𝑋2, … , 𝑋9) and is debating which test to use of the following:  
i. Reject 𝐻0 iff 𝑋1 > 7 

ii. Reject 𝐻0 iff 
1

2
(𝑋1 + 𝑋2) > 7 

iii. Reject 𝐻0 iff �̅� > 6 
a. Calculate alpha and beta for tests 1,2, and 3.  
b. Which test should you use, test 1 or test 3? 
c. Which test should you use, test 1 or test 2? 
d. What is the power of tests 1 and 3? What does this tell you? 
e. What if I change the distribution to a Chi squared distribution with degrees of 

freedom 𝜃? How about a Binomial with 𝑝 = 𝜃 and n known? How would the 
calculation change? 

 

Lecture – Ch 8 Lecture 2 - Slides 16 – 26 (11/16/18) 
 

1. 1-Sample tests about a population mean 
a. 1-sample z-test → Normal distribution with known 𝜎2 
b. Large-Sample Approximate 1-Sample Z-Test → n > 40 unknown 𝜎2 
c. 1-Sample T-Test → unknown 𝜎2 (small n) 

2. Summary 
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 1-Sample Z-Test Large Sample 
Approx 1-
Sample Z-test 

1-Sample T-Test 

Test Stat 
𝑧∗ =

�̅� − 𝜇0
𝜎

√𝑛

 

 

𝑧∗ =
�̅� − 𝜇0
𝑠

√𝑛

 

 

𝑡∗ =
�̅� − 𝜇0
𝑠

√𝑛

 

 
𝐻1: 𝜇 > 𝜇0  𝑅𝑅: 𝑧∗ ≥ 𝑧𝛼   

 
𝑅𝑅: 𝑧∗ ≥ 𝑧𝛼   

 
𝑅𝑅: 𝑡∗ ≥ 𝑡𝛼,𝑛−1  

 

𝐻1: 𝜇 < 𝜇0  
 

𝑅𝑅: 𝑧∗ ≤ −𝑧𝛼   
 

𝑅𝑅: 𝑧∗ ≤ −𝑧𝛼   
 

𝑅𝑅: 𝑡∗ ≤ −𝑡𝛼,𝑛−1  
 

𝐻1: 𝜇 ≠ 𝜇0 𝑅𝑅: |𝑧∗| ≥ 𝑧𝛼
2
  

 

𝑅𝑅: |𝑧∗| ≥ 𝑧𝛼
2
  

 

𝑅𝑅: |𝑡∗| ≥ 𝑡𝛼
2,𝑛−1

  

 

 
3. The Process:  

a. Confirm Assumptions:  
i. One sample compared to known value 

ii. Testing for true unknown mean (μ) 
iii. In this case we have unknown 𝜎2 
iv. Do we have approximate normality?? (Normal Q-Q Plot) 

4. Example 1 – The statistics department is ordering markers for the upcoming semester 
and needs to know the average lifetime of a marker for our instructors. The average 
lifetime posted on the company’s website is 3 weeks, give or take 2 days assuming 
normality. However, the average lifetime for Austin’s 25 markers last semester was 19 
days, give or take 1 day. Can the department trust the company’s website? Test your 
claim at the alpha significance level of .10. 

5. Example 2 – In an effort to study the population of the nearly extinct mountain gorilla, 
researchers looked at the lifespan of these gorillas. Researchers studied 100 of the 880 
remaining mountain gorillas and recorded their average age of 13 years old, give or take 
2 years. Last year, the average age of mountain gorillas was 13.4 years. Is there reason 
to be concerned about the populations reproduction at the alpha significance level of 
.05?   

6. Example 3 (Quality Assurance) - Philips produces 65W Dimmable LED Energy Star Light 
Bulbs sold at Home Depot. On the Home Depot site, they advertise the “life hours” of 
each light bulb is 25000:    
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Accounting for variability, is the mean lifetime of light bulbs actually 25000? Assume we 
have a sample of n=100 light bulbs with �̅� = 23024 and sample st dev (s) = 6705. Also 
assume we have the following output:  
 

 
 

7. What happens when we don’t have approximate normality? (Wilcoxon Signed Rank Test 
→ Nonparametric (distribution free) 

a. Hypotheses test median not mean 
b. Test stat V = sum of positive signed ranks 
c. Rejection Rule → uses normal distribution 
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Lecture – Ch 8 Lecture 3 - Slides 27 – 41 (11/26/18) 
 
1. SET Surveys 
2. Example 3 (Quality Assurance) - Philips produces 65W Dimmable LED Energy Star 

Light Bulbs sold at Home Depot. On the Home Depot site, they advertise the “life 
hours” of each light bulb is 25000:    

 

 
 

Accounting for variability, is the mean lifetime of light bulbs actually 25000? Assume we 
have a sample of n=100 light bulbs with �̅� = 23024 and sample st dev (s) = 6705. Also 
assume we have the following output:  
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3. 1-Sample Test for Population Proportion – Large-Sample Approximate Z-Test 
a. Use if 𝑛𝑝0 ≥ 10 and 𝑛(1 − 𝑝0) ≥ 10 
b. (Don’t worry too much about small sample test for proportion) 
c. Summary  

 1-Sample Z-Test 
for Population 
Proportion 

Test Stat 
𝑧∗ =

�̂� − 𝑝0

√𝑝0(1 − 𝑝0)
𝑛

 

 
𝐻1: 𝑝 > 𝑝0 𝑅𝑅: 𝑧∗ ≥ 𝑧𝛼   

 
𝐻1: 𝑝 < 𝑝0 

 
𝑅𝑅: 𝑧∗ ≤ −𝑧𝛼   

 
𝐻1: 𝑝 ≠ 𝑝0 𝑅𝑅: |𝑧∗| ≥ 𝑧𝛼

2
  

 

 
4. Example 4 (Text Ch 8, Question 43) – A plan for an executive travelers’ club has been 

developed by an airline on the premise that that 5% of its current customers would 
qualify for membership. A random sample of 500 customers yielded 40 who would 
qualify. Using this data, test at the alpha significance level of .01 the null hypothesis 
that the company’s premise is correct against the alternative that it is not correct.  

5. A Note on p-values and multiple hypothesis testing (Bonferroni Correction) 
a. Quick Source: https://www.npr.org/sections/thetwo-

way/2016/09/13/493739074/50-years-ago-sugar-industry-quietly-paid-
scientists-to-point-blame-at-fat 

b. Further Reading: Huff, Darrell, and Irving Geis (illustrator). How to Lie with 
Statistics. W.W. Norton & Co., 2006 

i. Discusses Bias, “A Well Chosen Average”, Deceptive Visualizations, 
etc. 

 

 
Lecture – Problem Session for Ch 8 (11/28/18) 
 
Lecture – Ch 9 Lecture 1 - Slides 1 – 9 (11/30/18) 

 

1. 2-Sample Z-Test with C.I. – comparing 2 population means (LABEL EACH) 
a. Assumptions 

i. 2 independent samples 
ii. Comparing means 

iii. Approximate normality for both samples (of both sampling distributions 
of sample means) 

https://www.npr.org/sections/thetwo-way/2016/09/13/493739074/50-years-ago-sugar-industry-quietly-paid-scientists-to-point-blame-at-fat
https://www.npr.org/sections/thetwo-way/2016/09/13/493739074/50-years-ago-sugar-industry-quietly-paid-scientists-to-point-blame-at-fat
https://www.npr.org/sections/thetwo-way/2016/09/13/493739074/50-years-ago-sugar-industry-quietly-paid-scientists-to-point-blame-at-fat
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iv. Both with known, unequal, variances 
b. Summary 

 2-Sample Z-Test 
with C.I. 

 

Test Stat 
𝑧∗ =

�̅� − �̅� − 𝑑0

√𝜎1
2

𝑚 +
𝜎2
2

𝑛

 

 
𝐻1: 𝜇1 − 𝜇2 > 𝑑0 𝑅𝑅: 𝑧∗ ≥ 𝑧𝛼   

 
𝐻1: 𝜇1 − 𝜇2 < 𝑑0 𝑅𝑅: 𝑧∗ ≤ −𝑧𝛼   

 
𝐻1: 𝜇1 − 𝜇2 ≠ 𝑑0 𝑅𝑅: |𝑧∗| ≥ 𝑧𝛼

2
  

 

c. Constructing the C.I. ((�̅� − �̅�) ± 𝑧𝛼
2

√𝜎1
2

𝑚
+

𝜎2
2

𝑛
) for 𝜇1 − 𝜇2 

i. Can think of this as (p.e. ±(crit value)(s.e. estimator) ) 
2. Large-Sample Approx. 2-Sample Z-Test with C.I.  – comparing 2 population means 

(LABEL EACH) 
a. Assumptions 

i. 2 independent samples 
ii. Comparing means 

iii. Approximate normality for both samples (of both sampling distributions 
of sample means) 

iv. Both with unknown, unequal, variances (n,m ≥ 40) 
b. Summary 

 Large Sample 
Approx. 2-Sample 

Z-Test with C.I. 
 

Test Stat 
𝑧∗ =

�̅� − �̅� − 𝑑0

√𝑠1
2

𝑚 +
𝑠2
2

𝑛

 

 
𝐻1: 𝜇1 − 𝜇2 > 𝑑0 𝑅𝑅: 𝑧∗ ≥ 𝑧𝛼   

 
𝐻1: 𝜇1 − 𝜇2 < 𝑑0 𝑅𝑅: 𝑧∗ ≤ −𝑧𝛼   

 
𝐻1: 𝜇1 − 𝜇2 ≠ 𝑑0 𝑅𝑅: |𝑧∗| ≥ 𝑧𝛼

2
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c. Constructing the C.I. ((�̅� − �̅�) ± 𝑧𝛼
2

√𝑠1
2

𝑚
+
𝑠2
2

𝑛
) for 𝜇1 − 𝜇2 

i. Can think of this as (p.e. ±(crit value)(s.e. estimator) ) 
3. Example 1 – (Textbook Chapter 9, Exercise 10) – An experiment was performed to 

compare the fracture toughness of high-purity 18 Ni maraging steel with commercial-
purity steel of the same type (Corrosion Science, 1971: 723 – 736). For 32 specimens, the 
sample average toughness was 65.6 for the high-purity steel, whereas for the 38 
specimens of commercial steel 59.8. Because the high-purity steel is more expensive, its 
use for a certain application can be justified only if its fracture toughness exceeds that of 
commercial purity steel by more than 5. Suppose that both toughness distributions are 
normal with the standard deviation of the high-purity steel known to be 1.2 and the 
standard deviation of the commercial steel known to be 1.1. Test this at an alpha 
significance level of .001.  

a. What is the appropriate test to use here? Justify your claim by confirming the 
assumptions are met. 

b. What are the null and alternative hypotheses? 
c. Calculate the test stat and the reject region. What is your conclusion at the alpha 

significance level stated? 
d. Calculate the p-value. What is your conclusion at the alpha significance level 

stated? 
e. What is a Type I error in context in this case? What is a Type II error in context in 

this case? 
4. Example 2 – Suppose that instead we knew only that the sample standard deviation of 

the high-purity steel was known to be 1.2 and the sample standard deviation of the 
commercial steel was known to be 1.1. Suppose also that instead of 32 high-purity steel 
specimens we had 41, and instead of 38 specimens of commercial steel we had 52. How 
would our test change? 

 

Lecture – Ch 9 Lecture 2 - Slides 10 – 19 (12/3/18) 

 
1. Example 2 – Suppose that instead we knew only that the sample standard deviation of 

the high-purity steel was known to be 1.2 and the sample standard deviation of the 
commercial steel was known to be 1.1. Suppose also that instead of 32 high-purity steel 
specimens we had 41, and instead of 38 specimens of commercial steel we had 52. How 
would our test change? 

2. Two-Sample t-test - comparing 2 population means (LABEL EACH) 
a. Assumptions 

i. 2 independent samples 
ii. Comparing means 

iii. Approximate normality for both samples (of both sampling distributions 
of sample means) 

iv. Both with unknown, unequal, variances (small 𝑚 & 𝑛 (<40) ) 
b. Summary 
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 2-Sample t-Test with C.I. 
 

Test Stat 
𝑡∗ =

�̅� − �̅� − 𝑑0

√𝑠1
2

𝑚 +
𝑠2
2

𝑛

 

 

With d.f. 𝑣 =
(
𝑠1
2

𝑚
+
𝑠2
2

𝑛
)

2

(
𝑠1
2

𝑚)

2

𝑚−1
+
(
𝑠2
2

𝑛 )

2

𝑛−1

  

(always round 𝑣 down, 
regardless of decimal) 

𝐻1: 𝜇1 − 𝜇2 > 𝑑0 𝑅𝑅: 𝑡∗ ≥ 𝑡𝛼,𝑣  
 

𝐻1: 𝜇1 − 𝜇2 < 𝑑0 𝑅𝑅: 𝑡∗ ≤ −𝑡𝛼,𝑣  
 

𝐻1: 𝜇1 − 𝜇2 ≠ 𝑑0 𝑅𝑅: |𝑡∗| ≥ 𝑡𝛼
2,𝑣
  

 

c. Constructing the C.I. ((�̅� − �̅�) ± 𝑡𝛼
2
,𝑣
√𝑠1

2

𝑚
+

𝑠2
2

𝑛
) for 𝜇1 − 𝜇2 

i. Can think of this as (p.e. ±(crit value)(s.e. estimator) ) 
3. Pooled t-test - comparing 2 population means (LABEL EACH) 

a. Assumptions 
i. 2 independent samples 

ii. Comparing means 
iii. Approximate normality for both samples (of both sampling distributions 

of sample means) 
iv. Both with unknown variances (small 𝑚 & 𝑛 ), but known that 𝜎1

2 = 𝜎2
2 =

𝜎2 (equal variance).  
b. Summary 

 Pooled t-Test with C.I. 
 

Test Stat 
𝑡∗ =

�̅� − �̅� − 𝑑0

𝑠𝑝√
1
𝑚
+
1
𝑛

 

 

With 𝑠𝑝
2 =

𝑚−1

𝑚+𝑛−2
𝑠1
2 +

𝑛−1

𝑚+𝑛−2
𝑠2
2  

 
𝐻1: 𝜇1 − 𝜇2 > 𝑑0 𝑅𝑅: 𝑡∗ ≥ 𝑡𝛼,𝑚+𝑛−2  

 

𝐻1: 𝜇1 − 𝜇2 < 𝑑0 𝑅𝑅: 𝑡∗ ≤ −𝑡𝛼,𝑚+𝑛−2  
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𝐻1: 𝜇1 − 𝜇2 ≠ 𝑑0 𝑅𝑅: |𝑡∗| ≥ 𝑡𝛼
2,𝑚+𝑛−2

  

 

c. Constructing the C.I. ((�̅� − �̅�) ± 𝑡𝛼
2
,𝑚+𝑛−2𝑠𝑝√

1

𝑚
+

1

𝑛
) for 𝜇1 − 𝜇2 

i. Can think of this as (p.e. ±(crit value)(s.e. estimator) ) 
4. Example 3 (Textbook Ch 9, Exercise 25) – Low-back pain (LBP) is a serious health 

problem in many industrial settings. The article “Isodynamic Evaluation of Trunk 
Muscles and Low-Back Pain Among Workers in a Steel Factory” (Ergonomics, 1995: 
2107-2117) reported the accompanying summary data on lateral range of motion (in 
degrees) for a sample without a history of LBP and another sample with a history of this 
malady:  
 

Condition Sample Size Sample Mean Sample SD 

No LBP 28 91.5 5.5 

LBP 31 88.3 7.8 
 

a. What is the appropriate test to use here if we want to test whether lateral 
motion differs for the two conditions? Justify your claim by confirming the 
assumptions are met. 

b. What are the null and alternative hypotheses? 
c. Calculate the test stat and the reject region. What is your conclusion at the alpha 

significance level of .10? 
d. Calculate the p-value. What is your conclusion at the alpha significance level of 

.15? 
e. What is a Type I error in context in this case? What is a Type II error in context in 

this case? 
f. Calculate a 90% confidence interval for the difference between population mean 

extent of lateral motion for the two conditions. Does the interval suggest that 
population mean lateral motion differs for the two conditions? Is the message 
different if a confidence level of 95% is used? 

g. How would this example change if for some reason we assumed that the 2 
populations had the same variance? 

 

Lecture – Ch 9 Lecture 3 - Slides 20 – 29 (12/5/18) 

 
1. Independent Samples vs Matched Pairs (linking factor) 
2. Example 1 – Determine whether the samples in the following examples are 

independent or matched pairs:  
a. Researchers are interested in testing the effect of drinking alcohol on driving. 

So, they measure the time taken for 30 subjects each to complete a driving 
course. Then, each subject drinks 2 beers in 5 minutes and the researcher 
times the driving course again.  
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b. Researchers are interested in testing the effect of drinking alcohol on driving. 
So, they randomly select 30 U.S. males to complete a timed driving course. 
Then, they randomly select another 30 males to each drink 2 beers in 5 
minutes and take the driving course.  

c. Researchers are interested in testing the effect of drinking alcohol on driving. 
So, they randomly select 30 females and measure the time taken for each to 
complete a driving course. The goal of the study is to see if female times are 
lower than the national average of 1.34 minutes.   

3. Paired t-test - comparing pop means (LABEL HOW YOU TAKE THE DIFFERENCE 𝜇𝑑) 
a. Inference is based on the average of the differences, not the difference of 

the averages!! 
b. Assumptions 

i. 2 samples NOT independent (have some linking factor) 
ii. Comparing means 

iii. The sample of differences comes from a normal population (CLT: if n 
≥ 30 then always safe to use the test regardless of the shape of the 
distribution. If n < 30, then can check the shape of the distribution 
with a histogram to ensure that it’s approx. normal) 

c. Summary 

 Paired t-Test with C.I. 
 

Test Stat 
𝑡∗ =

�̅�𝑑 − 𝑑0
𝑠𝑑
√𝑛

 

 
With 𝑑. 𝑓. =  𝑛 − 1  
 

𝐻1: 𝜇𝑑 > 𝑑0 𝑅𝑅: 𝑡∗ ≥ 𝑡𝛼,𝑛−1  
 

𝐻1: 𝜇𝑑 < 𝑑0 𝑅𝑅: 𝑡∗ ≤ −𝑡𝛼,𝑛−1  

 
𝐻1: 𝜇𝑑 ≠ 𝑑0 𝑅𝑅: |𝑡∗| ≥ 𝑡𝛼

2,𝑛−1
  

 

d. Constructing the C.I. (�̅�𝑑 ± 𝑡𝛼
2
,𝑛−1

𝑠𝑑

√𝑛
) for 𝜇𝑑  

i. Can think of this as (p.e. ±(crit value)(s.e. estimator) ) 
4. 2 Sample Proportion Z-test - comparing pop proportions (LABEL EACH) 

a. Assumptions 
i. 2 independent samples 

ii. Comparing proportions 
iii. 𝑚𝑝1̂ ,𝑚(1 − 𝑝1̂), 𝑛𝑝2̂ , 𝑛(1 − 𝑝2̂) ≥ 10 

b. Summary 

 2-Sample Proportion Z-test with 
C.I. 
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Test Stat 

𝑧∗ =
𝑝1̂ − 𝑝2̂ − 𝑝0

√�̂�(1 − �̂�) (
1
𝑚 +

1
𝑛)

 

 

with �̂� =
𝑚

𝑚+𝑛
𝑝1̂ +

𝑛

𝑚+𝑛
𝑝2̂ 

 
𝐻1: 𝑝1 − 𝑝2 > 𝑝0 𝑅𝑅: 𝑧∗ ≥ 𝑧𝛼   

 
𝐻1: 𝑝1 − 𝑝2 < 𝑝0 𝑅𝑅: 𝑧∗ ≤ −𝑧𝛼   

 
𝐻1: 𝑝1 − 𝑝2 ≠ 𝑝0 𝑅𝑅: |𝑧∗| ≥ 𝑧𝛼

2
  

 

c. Constructing the C.I. ((𝑝1̂ − 𝑝2̂) ± 𝑧𝛼
2
√
𝑝1̂(1−𝑝1̂)

𝑚
+

𝑝2̂(1−𝑝2̂)

𝑛
) for 𝑝1 − 𝑝2 

i. Can think of this as (p.e. ±(crit value)(s.e. estimator) ) 
5. Hypothesis Testing Flowchart – When to use each test 
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